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A body with a hole in it has a thin ligament if the boundary of the hole approaches the outer surface of the
body. The asymptotic form of the stress—deformation state of two- and three-dimensional bodies with
ligaments is determined, using the width of the ligament as a small parameter. A boundary-layer effect
arises near the ligament and can be described, in the two-dimensional case, by a system of ordinary
differential equations which can be solved explicitly. The stress—deformation state turns out to depend
closely both on the value characterizing the degree to which the ligament has narrowed, and on the overall
geometric structure of the body. Analysis of the asymptotic formulae indicates that the collapse of a
ligament cannot be a quasistatic process (the Griffith energy balance is destroyed). In the three-dimensional
case, the boundary layer is described by an elliptic system of equations in the plane.

1. STATEMENT OF THE TWO-DIMENSIONAL PROBLEM

LET G,y and G be regions in the plane, bounded by simple smooth closed contours I'y and I" which
touch at the origin of coordinates O, and let G4 C G. We reduce the characteristic size of the region
Gy to unity and define (dimensionless) Cartesian coordinates x = (xy, x,) by taking the Ox; axis
along the tangent to Ty, and the Ox; axis into G,. Let 0< e be a small parameter and let G, = {x:
(x1, x:—-€)EGy}, I'e = 0G,, Q. = G\G, (Fig. 1). In a small neighbourhood V of the point O it is
assumed that the region (1, is defined by the relation

—h_(x,)<x; <eth,.(x;) (1.1)
ht(x1)=x3m(at+0(x1)), x>0 (1.2)

In (1.1) and (1.2), h. are smooth functions, h=h, +h_>0, m is a natural number and
a=a,+a_.>0.
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The purpose of this paper is to investigate the asymptotic form as e—0 of the solution of the
problem of the plane deformation of a body £}, with a thin ligament

UV, -Veu(e,x)+ A+ W)V, V, -u(e,x)=0, x€Q, {1.3)
o u; e,x)=px), x€T, 6" (u;¢e,x)=0, x€T, 1.9

Here u = (1, u,) is the displacement vector, o () is the stress tensor, o™ = on, n = (ny,n,) is
the unit vector of the external normal, and p € C™(T') is the applied load.

The problem of a thin ligament formed by a circular hole which approaches the boundary of a
half-plane has been studied in [1-3], where results on the asymptotic behaviour were obtained from
the exact solution of the whole problem. Below, we make a direct asymptotic analysis, from which
the asymptotic form for non-canonical regions, in which it is difficult to construct explicit solutions,
can also be determined. In addition, we study the dependence of the asymptotic form of stresses in
the ligament on the extent to which it narrows [on the index m in (1.2)]. Problems concerning a thin
ligament between two parallel cracks treat a similar theme and use similar methods of investigation
[4, 5].

In the limit as e— 0, the sides of the ligament touch, such that the doubly-connected region ()
becomes a simply connected region {},, the boundary of which contains a singular point O, the top
of two peaks. Qutside the neighbourhood of the ligament, the asymptotic form of the solution of
problem (1.3) and (1.4) can be described by solutions of limit problems in the region (. A
boundary-layer effect arises in the ligament. This boundary layer is found in Sec. 2 by constructing
the asymptotic form of the solution of problems in thin regions [6-9] and using the “rapid”’ variables

E=(1,.8), 1= Txy, £ =€ 'xy, Yy=Qm)"! (1.5)

A similar procedure also yields asymptotic expansions of the limit problem near the singular point
O (see Sec. 3; a proof of the resulting formal expansion is given in [10, 11]). In Sec. 4, the method of
matched asymptotic expansions (see [12, 13] and elsewhere) is used to find the global asymptotic
behaviour. Corollaries and generalizations of the formulae obtained can be found in Secs S and 6.
Finally, the analogous three-dimensional problem is discussed in Sec. 7.

2. THE ASYMPTOTIC FORM OF THE SOLUTION OF THE PROBLEM IN A THIN
LIGAMENT

After changing to variables (1.5), the Lamé operator L(V, ) of (1.3) can be written as follows:
L™ 783,,e'3,)=e 2 MO + 2 MV + MUy3,5, +e22M )33} 2.1
MO =diag{y,2u+2}, MP) =diag{2u+,p}

11 12 11 12
Ml(2 )"'Mz(x )=#-, Mz(l )=M1(2 )=7\

M;(,'“)=Mi§u)=_0' ,':1;2; a=1-1, 9;=23/0¢

The operator in the brackets in (2.1) contains a small parameter in some of its higher derivatives.
It is therefore natural to use the algorithm of [6-9]. We will first derive an expansion of the
differential operator B *(x, V, ) similar to (2.1) from boundary conditions (1.4). According to (1.1),
the equation of the boundary in coordinates £ has the form

£, =tH. (e, £1) (2.2)
Ho(e,51)= 1+ € he(€7E)), H_(e,£1)=€ h_(e"§).
We should emphasize that the function H. is bounded in the zone |&|<const, where the

asymptotic form of the solution is being investigated. The vectors of the external normal .. (e, &) to
the curves (2.2) are given by the formulae
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nt(e’sl)‘__Nt(eiEl)_l(—H;(e’El)’il)
Nt(erzl)—- [1+(H;(e!£l))2]yz; Hi(f, Sl)':alHt(e’El)-

Thus

No(6,£)B (€781,€770,.,€7'3,) = {2M@p, + 2 xMU V3, —H MD),) -
—ECHIMP 31 (2.3)

We will seek the asymptotic representation of the solution in the form of the series
ue, )~ e Z el Ui, B)), ul=0),w). (2:4)
j=0

The index 7 in (2.4) will be chosen below. We substitute (2.1), (2.3) and (2.4) into Eqgs (1.3) and
(1.4), restricted to a neighbourhood of the point O, and collect coefficients of like powers of € (the
calculation is simpler if the dependence of H. on e is disregarded). As a result, we obtain a
recurrence relation of ordinary differential equations (with respect to the variable &, € [—H_(¢, &),
H_ (¢, &))] to find the functions U’ of (2.4); the vector-functions u/ are assumed to be arbitrary for
the time being. The conditions for these problems to be solvable for U* give a system of ordinary
differential equations (with respect to & ), which v/ and w’/ must satisfy. Only a few terms of the
series (2.4) will be needed. We will therefore give expressions for the vectors U’ only for the case
where the components v' =v and w®=w are non-zero and the other functions v’ and w’ are equal to
zero

UP=UP =0, Ul=-§09,w U =0

UZ=0, U} =AQ+2p) ' (BE301w - £,0,0)

UP =N+ 27 EGN +4p)(Yet3atw ~ %EIBT0) + N+ ) £29, [ (HZ + H2)dlw +

+2(H, -H_)d,v]}, Ui =0 2.5)

The given solvability conditions arise when determining U3 and U3 and have the form

0 l-Yo(HP+H )3 w+%U(H, +H )3, [(HE+H?)d3w]} -
-0 {%(H, +H_)3,(H, -H_) -3'v}=F} (2.6)
~d,(Hy +H_)o, v+ %3 (H} -H»)dw=F, 2.7

Here F, and F? are certain functions on the real axis R, defined by the right-hand side p of the
original problem.

The system (2.6), (2.7) is not formally self-conjugate. To reduce it to symmetric form, we apply
the operator Y29, (H, — H_) to the second equation and add the result to the first. The system
becomes self-conjugate after (2.6) has been replaced by the equation

~WBAYHE -H?)d v+ 33 HE+H)Hw=F, (2.8)

Here F2 = F(2)+ 1/261 (H+ _H,_)Fl .
Thus, the limiting problem (e = 0) corresponding to a stress-deformation state in a ligament is
described by system (2.7), (2.8) in which, according to (1.2), (1.5) and (2.2), we must put

HiE)=1+a, 6™ H_(E)=a 8" (2.9)

We further need the solutions ¢ = (v, w) of the uniform system (2.7), (2.8) on the straight line R.
Three of them are obvious

YUED)=(1,0), ¥2(E)=(0,1). ¥3(£,)=(0.%) (2.10)

Another three are obtained by integrating the system. To shorten the formulae, we introduce the
notation
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o0 El
(sz)(’én)=j‘z(t)dt %[ @) -z(-)dt, R2)E1)= [E—Dz()der+
0 ° 0 (2.11)
%[ 1)+ 2(-0)dt - 1/zgléf"(z(t) ~ z(~f))dt

Note that 4; Ry z = z and 82 R,z = z. The solutions mentioned have the form
pitde R W] R, j=1,2.3 (2.12)
Wi= 4HSH +H?), ¥i=_6HHE -H?)
W3 = 65, H ™ (H? — H? ) W 124, H7
V3= _6H(HE—H?), =_12H3; H=H,+H_ (2.13)
We also mtroduce solutions % of the uniform system (2.7), (2.8), in which the quantities
HY (&) = a. &™ are used instead of H. of (2.9). In addition to the obvious solutions (2.10), this
system is satlsﬁed by the vector-functions ¥ *>, j =1, 2, 3, where

—2m

YOI, =478 bl 008 ™) (2.14)
B1=1-2m, B =2~4m, B3=1-4m, A, =a, ta_

bi =-4@@} ta>)(1-2m)'4;', bi=-3(1-2m)'d~4mylA_

b =3(1-2m)'4_, b3 =2(1-2m) (1 —3m)™!
pi=-6(1-4m)'4_, b3 = —6(1—3m)"'(1~6m)!

By virtue of (2.11), (2.13) and (2.9), the solutions (2.12) can be expanded in series

. . 3 ;—_
VIR ED TR 2 e et (L 16100817 e (219)

€12 =€ €32 =C3, =0

-f Wi(n)dt, cy3=csy =£°W?(t)dt=f°ql§(t)dt
0

c22 = —f 1V3()dt, c55 = [ W3(H)dt (2.16)
0 0

It follows from (2.16) and (2.13) that the matrix ¢ = |,/ comprising the coefficients of the series (2.15) is
symmetrical and negative definite. This is true of any functions H. which increase sufficiently rapidly at
infinity. We denote the matrix differential operator of system (2.7), (2.8) by T(&,, d;). The scalar product
¢3* - Ty3*¥ is integrated by parts in the interval (— R, R), the terms outside the integral are calculated using the
asymptotic formulae (2.15), and taking the limit as R— % we obtain the representation
k+3

R .
2ejc = lim &¢’+3(E,)-T(E,,a,)wk”(s.)dz,-z(w’”,w

TR ARSI GRS )
E, ViD= [Hy v H )o,0,0,¥, + /3 (HE + H2)019, 010, — Y H] ~H2)(@10,3,¥,+3,0,81V,)dE,
I

i (R, R)) =

Zoei D> G235 [H A H )1 0,0,17 + Yy (H2 + H2)) 03¢, 1%,
I
Thus, ¢ is the Gram matrix, which possesses the properties mentioned.
3. ASYMPTOTIC FORM OF THE SOLUTION FOR A DEGENERATE LIGAMENT

We will consider the limit problem (e = 0) (1.3), (1.4). Since the load is self-balanced, a solution
of the problem exists which possesses finite elastic energy. We will find the asymptotic form of the
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solution near (0, +0) and (0, —0), the tops of the peaks formed by the contours I'; and I'. The
procedure for constructing the asymptotic form is essentially the same as that for finding the
coefficients of (2.4), with the initial variables x being used instead of the rapid variables £, and the
functions k.. from (1.2) taken as the functions H in (2.2). We should emphasize that the equations
of the boundary x, = *h. (x;) no longer contain a small parameter, but the ligament is still thin, by
virtue of relation (1.2).

We will first consider the case when p = 0 in the neighbourhood of the point O. Then the
asymptotic form of the solution ©° of the limit problem (1.3), (1.4) in the region (1, has the form

)= (ki —k3ixs, ki +k3x,)+0(@xp(=Solx,117%™)), x, >0 3.1

Here kj* are certain constants, and 0< &, is a small number. Since the solution u° is defined to
within rigid displacements, it can be chosen so that

ki=zxk; j=1,2,3 (3.2)

We further need the displacement fields Z/ in the region £} corresponding to concentrated effects
at the tops of the peaks (the analogues of the longitudinal and shear forces, and the bending
moment). More precisely, the vectors Z/ satisfy the homogeneous equations (1.3) in g and (1.4) on
3Qo\O and near the tops of the peaks they possess the asymptotic forms

Zi(x)~ £U(1,x;,8/0x, ) ¥ *3(x), x, >0 (3.3)

Let us explain the notation used in (3.3). U denotes the matrix differential operator, defined using
vectors with components (2.5)

4
Ue b, 00E)0E), WED)=E @), wE)* Z e UI®. Ur¢) (69

Note that in (3.4) U{=0, but the explicit form of Uj is not required [the possibility of
constructing it was pointed out after (2.5)]. The vector-functions ¥/*? are defined as follows. In the
neighbourhood of the point x; = 0 with a hole, they satisfy the uniform equations (2.7) and (2.8),
with h.(x;) instead of H. (&), and according to (1.2) they can be expanded in series

g /+3 (xl)—_- w01+3(x1)+(1’ [ %, II—Z»I)_O(“Cl lBj+l), x> £0 (35)

The proof of the existence of the required solutions follows the usual scheme: the asymptotic terms Z/* of
(3.3) are multiplied by cutting-off functions y. (x;), the discrepancies f/, p/ of the resulting products in the
uniform limit problem (e = 0) (1.3), (1.4) are then calculated and, finally, the “energy” solutions ZV of the
problem in )y which compensate the discrepancies are added. We will explain why it is possible to find
solutions ZY with finite energy. The procedure used to construct the formal asymptotic form described at the
beginning of Sec. 2, gives terms of the series U* with k=4, 5, . ... If (v, w) = ¢**/, then according to (3.5),
(2.14) and (2.5),

lUk(x)!<C,IX, ¥l3,-+(k~1)(2m—l)<c2¥x“(k—3)(2m—1)-1 (3.6)

Thus, replacing the operator U in (3.3) by (3.4) with a large number of terms of the series, the discrepancies
can be made to decrease as |x|—0 as rapidly as desired, and this removes the need to consider admissible
singularities at the tops of peaks. Since, from (3.6), the derivatives of the functions U; are quadratically
summable, it is sufficient to take four terms of (3.4) when constructing the energy correction ZY. Thus, for the
existence of the required vector ZY it remains only to verify that the loads f/, p/ are self-balancing. We will
denote by Q(d) the region Q\Q,; with “broken-off” peaks, where 0<d is a small number, and Q, = {x:
Ix;/<d, |xs]<cd} is a rectangle whose boundary intersects £}, in the segments I*(d) = {x: x; = *d,
~h_(xd)<x;<h,(*xd)}. Weput X! = ¢!, X? = ¢% and X3(x) = (~x3, x;). We have

S xkax+ [ plX¥ds= 1im - [ XL 2ZMax+ xk.
2, asy, d=+0: Qd) * 3@ nagn,
B*(x,2*)ds)= lim T3 [ {0, @ XK +0,,@*) X dx, = lim T3t (3.7)
d=0t I{d) d—0z I

By virtue of (2.5) we have the equations
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+3 j+3 +3 i+3
o,,(Z’*)=A(a,w{ —x,a}\p’, )+(3A+4p)('/°x§a}w,, —Vza’,w’, )+
f+3 i+ 3
QA+ wx, 02 (—@ +h )0 T w2, —h)a v ) (3.8)

i f+3 j+3 +3 j+3
an(Z’t)=A(‘/zx§8f\y£ —x,aﬁ\p'l )+%Aa,(—(h1+h’_)a}wf +2(h+—h_)a,\v{ ),

9, =dafox,, A=4pA+p)(A+2u)"!

Now, evaluating the integrals, we have
t
z.’I-’k=-A5i’k‘+'0(l), d—0

Thus, the limits (3.7) become zero, that is, the loads are self-balancing and energy corrections Z Y exist. We
note that the same calculations (applied to the Betti formula for vectors u® and Z’) can be used to find the
constants k; from (3.1) and (3.2)

kj=—i£Zj-pdx, i=12,3 3.9)

It turns out that if p (0)#0, there is no solution of problem (1.3), (1.4) which possesses finite
energy in . The procedure used to find the solutions u® with the smallest possible singularities is
the same as before: we construct a part of the asymptotic series and select an asymptotic correction.
Only the principal singular term of the asymptotic form is then needed. Returning to the algorithm
of Sec. 2, we arrive at a system of ordinary differential equations (2.6), (2.7) in which the H. are
replaced by a.x3" and F; = —A"!p,(0), F,(x) = A~ }(—=p,(0) + p;()2a_mx?"~'. The particular
solution of this system has the form

(U(xl),w(xl))=P1(O)(Vl(xl)»Wl(xl))“'l’z(o)("z(xl), Wz(xl)) (3.10)
Vi) = AT AP 4@ ta2 )+ 6Qm+ 1) e (@ — a2 ) (2-2m) 1xi"2m

wl(x)=ATTAF 6@ -a2)+ 122m + 1) a_(ay +a )} (3 —4m) ' (2 —4m) 1x}—4m
vi(x;)=-AT'433@ —a )3 —4m)Ix] 4"
wi(x,)=-AT'AP6(3 —6m) (4 —6m) ' x}"C™ (3.11)

If m = 1, the multiplier (2 —2m)~'x}~?" in the first row of (3.11) is replaced by In|x,|.
The functions (3.11) define the asymptotic form of the solution

W’ () ~U(1, X2, 3/0x,){p1 (0)(V' (x1), W (x1)) + P2 (0)(V (x1), W? (x1)) } (G.12)

If p,(0)#0, the only important term is the second one in the brackets, which describes the
principal term of the asymptotic form. The lowest-order terms after it, which depend, for example,
on (8;p)(0), are of a higher order than the expression p,(0)(v', w'). This expression predominates if
P2 (0) =(.

4. THE ASYMPTOTIC FORM OF THE SOLUTION

We will assume first that p =0 in the neighbourhood of the point O. For the principal
approximation to the solution of the problem (1.3), (1.4), it is natural to take the solution u° of the
limiting problem (1.3), (1.4) in ,. This solution satisfies the boundary condition (1.4) on I', and
outside the neighbourhood of the ligament it leaves a small error O(e) in the condition on the
contour I', . However, it is unsuitable as an approximation to the solution u (e, x) near the point O,
because it can have different limits as x—» +0 [compare this with (3.1) and (3.2)]. Thus, using the
method of matched asymptotic expansions, we select a different representation of the vector u (e, x)
on the ligament. For small x we shall therefore look for the principal term of the asymptotic form in
the form

d 3
u(e, x) ~U(e, &2, ?{’EI”"“)‘V (3 (4.1)
=
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Here ¢/*> are the solutions of (2.12) described in Sec. 2, U is the operator of (3.4), and A, (¢) are
quantities to be determined. Using (2.15), we separate the non-decaying terms in the asymptotic
form on the right-hand side of (4.1) as ¢&,— . Returning to x coordinates, according to (1.5), we
find that these terms are equal to

A (e)[e%c11(1,0) +cy3(—€%E;, £1)] 2 A2(€)C22(0, 1) £ A3(e)€%c3,(1,0) +
+C33(—€%E2, £1)] = 2% [e)14,{€) + €3143(€)] (1, 0) £ c224,()(0, 1) £

te 7 [c;3A4,(€) + c3343(€)](—x2,X;)

Comparing the last expression with the asymptotic forms (3.1) and solving the system of algebraic
equations using (3.2), we find
Ay(e)= A2 =kac3}
Ap(€)=€ A, +0(") (p=1,3) 4.2)

o _ -1 o _ -1 - 2
Ay =kye33d™, A3=—-kic;3d, d=cy ¢35 —c13

Thus, the principal term of the asymptotic form of the solution u (e, x) on the ligament must be
found using (4.1), with 4;(e), j =1, 2, 3 replaced by e *A9, A9, €™ A3 from (4.2). [Comparing
(2.4) and (4.1), we see that 7 = —a.] We now construct the next term e”u” of the outer expansion.
The choice of the power p of the small parameter is governed by two factors: by combination with
the lowest-order terms (as £, — + ) of the expansion of the sum in (4.1) and by compensation of the
error O(¢) left by the vector u° in the boundary condition (1.4) on I',. According to (2.15), (2.14)
and (1.5), the lowest-order terms have the form

U(e, £2, /3£, )(A1 () VO (51) + A2()Y° () + As (VB + . . . =
=U(1,x2, 0/0x,) e T2 ATE 727 Y04 (x1) + 436> 31905 () +
+e A3 ITYOS () . . (4.3)
The dots here denote unimportant terms. It is clear from (4.3) that the first term in brackets has
the lowest index. This index p=a =1—y is less than one, and so the second term of the outer

expansion is found by the matching procedure. Recalling the expansions (3.3) of special solutions
Z’, we conclude that

e "YUl TV (x) = e T747Z1 (x) (4.9)

When constructing the next terms of the asymptotic form, it is necessary to allow for discrepancies
in the boundary condition on I" and apply the matching procedure to the lowest terms of the series of
special solutions. We shall merely point out the principal asymptotic correction (4.4) far away from
the ligament and turn to the case p (0) #0. Suppose first that p, #0; in (3.12), we change to rapid
variables (1.5)

u%(e, x) ~ € U(e, &2, 3/0£1 )V (51), W' (£1))

Thus, for the matching procedure, we need to construct a solution (v?, w?) of (2.7) and (2.8) with
right-hand sides F; = 0, F, = —A™'p,(0), which has as its asymptotic form as & — + the quantity
[v*(£1), w?(£)). The answer is written using the operators R, from (2.12)

O*,w)=p2(0) AT (R, V2, R, W?)
Vz(El) =H(51)1 [401(H+(51)3 +H—(£1)3) —6(% ﬁ —c2 )(Hy (El)2 _H—(El)z)] (4~5)
W2(1) = H(E) ™ [6c1 (Hi(]1)® + H_(£1)%) — 12048} — c2)(He (81)* - H_(51)?)]

f V2(£)dE, = of" W2, )dE; =0 (4.6)
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The functions H. in (4.5) are given by (2.9), and the constants ¢; and ¢, are found uniquely from
(4.6). The principal term of the asymptotic form in the case p,(0) = 0, p; #0 has the form

u(e,x)~e3**1U(e, &, 9/, )(v' (1), W' (¢1)) (4.7)

We note that representations (4.4) and (4.7) agree with (2.4) for 7= —4a+1 and 1=3a+1,
respectively. If m>1

@', w')=p (O)AT' R, V', R, W)

£
Vi) =HE ) [45H (51) +H_(51)°)+ 6(H+2($1)—H—(El)z)(({ﬂ—(t)dt +c3y)l

£
W) =HE ) (68 (H (1) - H_(£1)*)+ 12(H+(El)+H:(El))(({H—(t)dt +e3éy)l ;

f £, W (£, )dE, =0 (4.8)

We emphasize that the last equation serves to find the constant c;. Formulae (4.8) still hold when
m = 1, but the odd functions V' and W' possess the asymptotic form

Vi(§1)~2473 Qa2 —ara_+a2 ) g =K
Wl(1)~2473(Ba, —a_)£?

Relation (4.7) for w' makes sense, whereas the action of the operator R; on V' is not defined. It is
therefore necessary to change the expression for the function v'. We will put

v‘(S.)=P1(0)A_‘(‘{ ViE)dE +e(e)

and the quantity c(e) is chosen so that
v E)=KIn(E” 15 DO L), 16l (4.9)

Not that, according to (1.5), changing from coordinates ¢ to x eliminates Ine from (4.9). This
circumstance allows the expansions (4.6) and (3.12) to be matched.

5. DISCUSSION

1. Korn’s weighted inequality

In proving the solvability of the limit problem in £}, and the estimate of the solution of the problem in {2, a
special modification of Korn’s inequality must be used. With the aid of the methods described in [14, 15] we
obtain the following. Suppose that the vector u€ W3(Q,) is subject to conditions which eliminate arbitrariness
in the choice of the rigid displacement

o uy (e, x) —x,u,(6,x)) sy =0,  fu(e,x)ds, =0, i=1,2
r r
Then
2 2 2 1

ou ou ou
Ew;Q)=c d+e)2u, 12 +@+e)y*lu,| +1—-] + Ll +@d+e)? L+
; ) { fd+e)iu1* +@d+e)*lu,l ax,' ! x,v d+e) lale

+(d+e)"| e I }ax (5.1)

in which E is a functional of the elastic energy and d(x) = |x [*". The constant c is independent of both u and
€€ (0, ], and inequality (5.1) remains true even when € = 0.
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2. Justification of the asymptotic form

In previous sections, we constructed inner and outer expansions u™ (e, £) and u™ (e, x) for the solution «. In
view of various features of the construction of the global asymptotic approximation (compare this with [13,
16]), we will describe it in detail. Let y be a smooth cutting-off function in ,; it is equal to zero outside the set
VN Q,, and on the ligament y (x) = xo(x;), Where xo(x;) = 1 for | x; | <p, and py>0. Suppose also that U (e,
x1, h(x1) " Hx, + h_(x;)]) represents the outer approximation u™ (e, x) on the ligament in special variables. In
addition, we assume that the vector function v is continued and remains smooth beyond the set (0. The
global approximation mentioned above has the form

(1= x N0 (e, x) + X)L = xg (e 7%, )+ XEIA — x0T TX MU e, x,, [e+h(x)] ' ¥

X [ty + D+ xEIu ™M e, eV, L 670x,) - X0 - xg (e VX, DU (e x) (5.2)
Here U* (e, x) denotes the general terms of the expansions of the vector functions u™ and u™ as x—0 and
x1—> . This quantity is allowed for twice in (5.1), in both the second and the third terms, but this can be
remedied by subtracting it. Substituting (5.2) into (1.3), (1.4), calculating the corresponding discrepancy and
applying inequality (5.1), we obtain an energy estimate for the difference between the true solution u of
problem (1.3), (1.4) and the asymptotic solution (5.2). We note that, on the basis of local estimates of the

solutions of elliptic boundary problems {17], pointwise closeness of the above solutions can be established.

3. Stress concentration on the ligament
We will first consider the situation when p (0) = 0. According to Secs 3 and 4, far away from the ligament the
asymptotic form of the solution has the form

e, xy~ulxy+e Tt T Y)Y ...

Thus, outside the neighbourhood of the point O, the stresses o (i; €, x) are bounded. Owing to the singularity
of the vector (4.4) at zero [compare this with (3.3), (3.5)], these stresses increase as x—0. Thus, the stress
concentration observed on the ligament is defined by the inner expansion (4.1) (boundary-layer type solution).
Starting from (4.1), (4.2), (2.12), (2.13) and (2.5) we have

0 @ex)~eTTA T AW E) -V EN ..

p=1,3
a”(u;e.x)~e_7+aA z 3,4;[‘/;5;31\115(51)——E,a,\l'f(E,)*'D(‘l’p;El)]+..-
p:]’
0t ex) - YT OAQH 20T T A [BAr 4, 8301E €,) - BEIATET €, N+

p=13
++ w2, DWPig] .
D(‘ll; E]) = 61{ _(H+(£1)2+H—-(£1 )2)\1’2 (E;)*’2(H+(E,)—H-(5.))‘I’1(E,)}a a‘ = a/aE,

It is clear that the component oy (1) is the largest; in the main, it is a linear function of the variable x, and
has order €.

If p(0)#0, the calculations are carried out using formulae (4.4), (4.5) and (4.7), (4.8). Again, the
highest-order term is the stress oy (1}, where

0, @5 &x)~ e D O ) - EWED T, OV ) - EWIE N ..

In other words, when p,(0)#0, p,(0) = 0, the stress oy; (1) on the ligament is of O(e™'* ). If p,(0)#0,
oy (1) has order 227,

4. Modifications of the geometric shapes

The region illustrated in Fig. 1 remains connected. Another possibility that could be considered is that, when
e = 0, the region £, could split into two sets {1 and Qg (Fig. 2). If the load p applied to each of the contours
3QF is self-balanced, the construction algorithm for the asymptotic form of the solution is simplified and the
boundary layer can be found without the use of the vector function (3.3). The point is that there is an energy
solution u"* of the limit problem in the region QF which can be found apart from the rigid displacements and
we can therefore assume that u%*(x) = o(exp(—8y|x;|'~2™))as x;— +0. This means that we need only allow
for discrepancies which arise due to regular perturbation of the boundary. But if the principal vector (FT, F5)
and principal moment Fy of a load applied to 9} are non-zero, there is no energy solution %%, Taking into
account obvious relations (F; = +F,) and repeating the calculations of Sec. 3, we can see that u%* of the limit
problem exists which possesses the asymptotic form
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nﬁ
&
0
Fic. 2.
3
bro j+3
urey=+ T KU, x,,3/3x,)¥ ), x, >+0 (5.3)

i
Performing the matching, we look for the inner expansion in the form (4.1), where A;(€) is given as follows:
A(€)=¢®F, A,(e)=F,, A (e)=c?*"'F, (5.4)

We should emphasize that the sum over k = 1, 2, 3 of the expansions (2.15) of the solutions /** does not
affect the principal terms of the asymptotic form of the stresses gy (u; €, x), since the solutions (2.10)
correspond to rigid displacements which constitute the arbitrariness in the choice of the solutions of the limit
problem in Q7. The stresses on the ligament are calculated with (4.1), (5.4). We should merely point out that
when F3#0, o, (x) has order €2, and when F; = 0 and F,#0, this correction is equal to e, Finally, if
F3=F, =0and F, #0, then oy (u; €, x) = O(e"!). In conclusion, we note that the procedure given here can be
extended to the case where two bodies are connected by several ligaments (such as strips with a round hole).

5. Fracture of a ligament

We will now consider the region shown in Fig. 1, and suppose that p = 0 near the point O. Using (4.4), and
the fact that the global approximation of the solution on NV is the same on the whole as the sum
u%(x)+ €' "7ASZ!(x), we calculate the asymptotic expression of the potential energy of deformation of the
body .

Nu; Q) =EW; Q) — [u-pdsy = -Yfu-pdsy=-2fu pds, — Ve “VA] [ Z' - pdsy + O(e) =
r r r r

=AW Q) +e' Yo, kid ! +O0(e) (5.5)

We note that c33<0, d>0, that is, the second term in (5.5) is negative. Let (), be a region in which the
ligament has been torn apart (so that the arc joining points on opposite sides of the ligament is supplementing
the boundary 3£} ). As in 4, in the asymptotic expansion of the solution u'(e, x) of (1.3), (1.4) in (), the
boundary layer (4.1) and correction (4.4) to the outer expansion disappear, so that on NV
u'(e,x) = u’(x) + O(e). Thus II(u'; Q) =T(u’ Q)+ O(e). This means that the increment of potential
energy of deformation is €'~ Yc33k3d™" + O(e). The increment of surface energy is O(e) and, therefore, the
energy balance is destroyed in the case of small . Thus, quasistatic fracture of a ligament is impossible within
the framework of the Griffith hypothesis.

6. DIRICHLET'S PROBLEM FOR A BIHARMONIC EQUATION

In the region (), described in Sec. 1, we consider the boundary-value problem

A’w(e,x)=0, x€Q, 6.1)
w(e,x)=y¢ (x), O,w(e,x)=V¥ (x), x€T (6.2)
w(e, x)=9p*(x), 9,w(e,x)=¢*(x), x€ET, (6.3)

This problem corresponds, for instance, to the bending of a plate with a rigidly fixed edge: in that
case Q, is a surface in the middle of the plate, and inhomogeneity on the right-hand side of (6.1) is
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eliminated by partial solution of a biharmonic equation in the plane. The Dirichlet conditions
simplify the algorithm for constructing the asymptotic form; a boundary-layer type solution is
calculated, whatever the solution of the limit problem in Q, (see [16]). In fact, on the ligament, the
asymptotic series is sought in the form

w(e, x)= Wo(£) + k}gle’“"wk(xm) (6.4)
t=feth(x)) x2—h_(xy))

Substituting (6.4) into (6.1), we find that W, is a cubic polynomial in the variable i. The
coefficients of this polynomial are found for boundary conditions (6.2) and (6.3)

Wo(1)=¢7(0) + [¢*(0) - »™ (0)] (3¢* - 2¢%) (6.5)

All the terms of the series (6.4) can be found, as in [13, 16], by writing the biharmonic operator
and the derivative 9,, using the variables x, , ¢ and expanding the smooth functions ¢*, ¢* in a Taylor
series.

Another possible way of interpreting the system (6.1)-(6.3) is as a problem for finding the Airy
function. At first glance it would appear that the asymptotic form of the stress o{u; €, x) on the
ligament can be found explicitly using (6.5), but this approach gives rise to complications, owing to
the multiconnectedness of the region ).

We recall some of the properties of the Airy function (see [18] and elsewhere). It is defined to
within a linear function and the arbitrariness can be removed, for instance, by the condition
¢~ =~ = 0. Let w be a solution of problem (6.1)—(6.3), for which the right-hand sides ¢* and ¢+
are calculated with respect to the vector p = (py, p-) from (1.4), using the formulae

prx(s)=1 +x1($)*xz(S)+szp1 — X padr
s s (6.6)
Vi) =n ()1 - g’ p2(r)dr)+ ny(s)(1 + { pi(r)dr)

Here § is the length of the arc on I" and x(s) is the corresponding point; x (0) = 0. The functions
(6.6) are smooth, because the load is self-balancing. Then let w; be the solutions of the same
problem with the following right-hand sides

¢ =0, =1, ¢r(x)=xx

Vr=0, =0, yi(x)=ne(x), k=12, i=0,1,2 6.7)

The Airy function obeys the relations
F=w+Agwg + Ayw; + A,w, (6.8)
F322=0y,@), F11=032), F ;3 =-043(u) 6.9

The constants A; are found from the condition that the displacement vector is uniquely defined by
(6.9). It has been verified [19] that this condition can be written as follows:

(F,w;)=0, i=0,1,2 (6.10)
2 ?*F 3*G A ?F 3G
(F,GY= X [ - T =5 )dx
hE=1 & dx;0xx dx;dxx 2\ +p) ox; dxy

We note that the functions in (6.6) are equal to zero at the origin of coordinates. From this and
formulae (6.7), we conclude that the principal term (6.5) of the asymptotic form of the Airy function
on a ligament has the form Ay (3t?—2t3). According to (6.10) and (6.8), (6.6), the value of A,
depends globally on the load p (that is, on its values at all points of I') and to find Ay we need to
know the function w, completely. Thus, as in the solution of (1.3), (1.4), we obtain integral
formulae of the type (3.9).
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7. THREE-DIMENSIONAL LIGAMENTS

Suppose that the three-dimensional elastic body (), has a hole, the boundary I, of which has
approached the outer surface I'" of the body. We denote by w CT the set to which surfaces I' and T,
stick as e— 0. Thus, (), contains a thin ligament in the neighbourhood of w. The algorithm for
constructing the asymptotic form for the problem of the theory of elasticity in (! depends on the
structure of the set w. If w is a smooth closed contour, this algorithm does not differ essentially from
that given in Secs 2—4; the only new factor is the dependence of the limit problem (2.7), (2.8) on the
variable s on the contour dw. In the case where w consists of the two-dimensional region on I and its
smooth boundary dw, the methods described in [20, 16] can be used to construct the asymptotic
form of the stress—deformation state of the body (a plane region with a hole separated from the
outer contour by a thin ‘“beam’ has been investigated in the same way in [4, 5, 16]).

We will consider the case in which the set w consists of the point O only. Near O, 1 is defined by
the relations

~h_()<x3<et+h.(x')

he(x')=r*™ @, (p)+ O(r), r=>0 (7.1)

Here x’ = (x;, x,) are Cartesian coordinates in the plane, (r, ¢) are the corresponding polar
coordinates; a.. (¢) are smooth functions on the circumference; a, +a_>0,m=1,2,.. ..

In Q. we will examine problem (1.3), (1.4) in which p = (p,, p», p3) is a smooth self-balanced
load on I', and, for simplicity, we take p = 0 near 0. As in the two-dimensional case, we will look for
the asymptotic form of the solution by considering two limiting problems. The first is Eq. (1.3) in
with boundary conditions (1.4) on (' UTy\0. The second is a system of equations in the R? plane,
which describes the effect of a boundary layer on the ligament. This system is constructed in the
same way as in Sec. 2. Below we will refer to the formulae of Sec. 2 with variables

E=(,8) E=(¢1.5)=€¢"X, t3=€¢"x;, y=0Qm)! (7.2)

instead of those in (1.5).

In the asymptotic series (2.4) u/(¢) and U’/(¢) are three-dimensional vectors u/ = (v//, w/),
v/’ = (v, vh). Let vV’ =v, w®=w, and suppose that the other variables v/’, w’ are equal to zero.
Splitting the operators as in (2.1) and (2.3), we obtain the representation [see (2.5)]:

U'=0, UP=0, U'=-{,Vw, Ul=0
U?'=0, Ui =\Q+2u) " (BEAw - £,V v)
U =\ +2u) ' GA+4p) VAW Y] - [Vo+2Q0+2u) T A+ )TV -u]% 8] +

+Quy " [QHy —H_)v— % Q(H? + H2)Vw] (7.3)
Hy(e,&')=1+a, @)™, H_(e,£)=a_(p)p*™; p=I¥| (7.4)
, 22 vy dy,
=(C1,0,), X; ¢, = ¥ — ! ! !
0=(Q1,02), GX: &, V) s X E)u( 3%, &)+ 3t EN+

+ 22 5 '
N+ 24 IRARLL DL

The solvability conditions for the calculation of U*" and U3 form a system of partial differential
equations

—QH.+H_;E, Y+ %QH! -H?; £, V)Vw=F (7.5)
V--BQWH-H E,Vv+ 0HD +H2 E ,V)Vwl=F, (7.6)

Near the point O, the asymptotic form of the solution of the limiting problem is £}, can also be
described by exponential solutions of the system (7.5), (7.6), where & =x and H.(x') = r*a, (¢)
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(see [21, 22]). A complication arising when investigating system (7.4), (7.5) is that the differential
operators that it contains degenerate at r = 0 (or increase inconsistently as p— + ). However, by
multiplying Egs (7.5) and (7.6) by r~2™ and r ~*™, respectively, and replacing the function w by
w = r?™w, the system is brought to a form which can be used with the results of [23, 24]. Thus, the
exponential solutions mentioned have the form

vx') =r’ 5 GO nr) V=1 (p)
j=o0
wix')y=rAti-im §(f!)"(1nr)"w"‘-”(¢) (1.7)
j=0

Here k=0, ...,J—1,and A and VO, W®) .. (v9"D WDy are the eigenvalue and
Jordan chain (eigenvectors and adjoint vectors) of a bundle constructed in a standard way [23], on
the unit circle.

Six solutions can be written explicitly.

(1’0) 0)’ (0’ 1:0)9 (0’ 0’ 1)’ (_x2yxl’ 0)9 (0’ nyl)’ (0, 0:x2)

These correspond to eigenvalues A =0, 2m—1, 1, 2m and, by virtue of (7.3), generate rigid
displacements which also determine the principal term of the asymptotic form of the solution u° of
the three-dimensional problem in the limit region (),

ud(x) = ¢y~ baxy + byxs + O(rRe M)
ud(x)=ca +bax; +byx; + O(rRe o) (7.8)

ug(x)= c3—byxy —byx, + O(rRe Ag+ 1__2,,,)

Here A, is the first eigenvalue (with smallest real part) of the bundle in the half-plane {AEC:
Re A > —m} which is different from the numbers 0, 1, 2m—1, 2m.

We should emphasize that (7.8) is very different from (3.1): in the two-dimensional case, the
remainder decays exponentially as one approaches the top of the peak, but exhibits exponential
behaviour in the three-dimensional case only as r— 0. This complicates the procedure of matching
the total, outer and inner expansions, although the principal term of the boundary layer is easier to
find in this problem. The point is that there is another difference between (7.8) and (3.1) due to the
different geometries of the limit regions. In the problem of Sec. 3, the point was the top of two
peaks at once, the series (3.1) for the two peaks containing different constants, k;*, and solutions
(2.15) which allow for discontinuities k" — &, are included in the two-dimensional boundary layer
(other possibilities associated with the geometry of the set (), were discussed in point 4 of Sec. 5).
The series (7.8) has the same form, however the point O is approached, there are no discontinuities,
and the principal terms of the boundary layer are given by the formula

(c1,c2,¢3) €7 (—b3ks, b3ky, —br§1 — b1§2) + €(b2€s, b1 £5,0) (7.9)

Note that (7.9) corresponds to zero stresses, and so the asymptotic form of the stress—deformation
state of the ligament is determined by the lowest terms of the boundary layer. To construct these,
we need to find special solutions (7.7) of the uniform system (7.5), (7.6) in the case when
H. (x') = r’™a. (¢), calculate the coefficients of those solutions in the expansion of the field «° and
solve system (7.5), (7.6) in the case (7.3), which has the given asymptotic form at infinity [see
formulae (3.1), (3.2), (3.9) and (4.1), (2.15), for which it was possible to find explicit solutions,
owing to the fact that (2.7), (2.8) is a system of ordinary differential equations].
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